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The tagged particle BBGKY hierarchy is systematically expanded in inverse 
powers of the square root of the particle mass. In the Brownian limit, for fixed 
Knudsen number, the hierarchy reduces to the Brownian limit of the repeated 
ring equation which itself reduces to the Fokker-Planck equation. The friction 
coefficient of the Fokker-Planck equation is found to be a functional of the 
solution of Dorfman, van Beijeren, and McClure's extended Boltzmann equa- 
tion for a fixed object in a flowing gas. As a consequence, the tagged particle 
diffusion coefficient calculated in the Brownian limit of the repeated ring 
equation is valid for all particle sizes. 

KEY WORDS: Kinetic theory; BBGKY hierarchy; Brownian motion; re- 
peated ring equation. 

1. I N T R O D U C T I O N  

Bol tzmann  or  B o l t z m a n n - E n s k o g  theories of tagged par t ic le  mot ion  pre-  
dict  that  the self-diffusion constant ,  D, varies as the inverse square of the 
coll is ion d iameter .  However ,  it is well k n o w n  that  large tagged par t ic les  
fol low the S tokes -E ins t e in  (SE) law, with D p ropor t i ona l  to R -1, where R 
is the radius.  Surpris ingly,  the S tokes -E ins t e in  law even appea r s  to be a 
good  a p p r o x i m a t i o n  to D for a tagged m e m b e r  of a pure  s imple liquid. 
Since the R -  i S tokes -E ins t e in  behav io r  is qual i ta t ive ly  incompa t ib l e  with 
the results of B o l t z m a n n - E n s k o g  type  theories,  those theories are  of l imited 
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validity. Thus, construction of a theory which can produce either Boltz- 
mann or Stokes-Einstein D's, as appropriate, is highly desirable. 

Two approaches to such a theory naturally suggest themselves. First, a 
hydrodynamic theory, which easily yields the SE law, might be extended in 
an attempt to reach low density correctly. Second, simple kinetic theory, 
which easily yields the correct low-density limit, might be supplemented by 
collision events which give the SE law at higher density. Here we discuss 
this latter approach. 

Soon after the ring kinetic operator was introduced by Kawasaki and 
Oppenheim,(l~ it became apparent that the rings produced some vestiges of 
SE behavior. Later on, Ernst and Dorfman (2) obtained a "repeated ring" 
operator, analysis of which is extremely difficult. Nevertheless, a simplified 
treatment of the RRO by Mehaffey and Cukier (3) produced the SE law, 
with a "5~r" for a large hard sphere in a dense bath (4~r is correct). 

Since the drag on a large fixed particle is related in a simple way to D, 
the problems under discussion must exist for a kinetic theory of the drag. 
Cercignani, Pagani, and Bassonini, (4) Sone and Aoki, (5) and Dorfman, van 
Beijeren, and McClure (6) have given theories of the drag which reproduce 
both the high- and low-density limits. In these theories, the gas is described 
by the Boltzmann equation--and, thus, can never be truly dense--and the 
fixed particle provides a source term or boundary conditions. When the 
particle is large with respect to the mean free path, the SE law is found. 

The method of Dorfman, van Beijern, and McClure(6)--the "extended 
Boltzmann equation"--is of particular interest. In their formulation, calcu- 
lation of the drag is obviously similar to calculation of D with the repeated 
rings. Cukier, Kapral, Lebenhaft, and Mehaffey (v) showed that if one 
assumes that the RR operator is diagonal on the tagged particle velocity, 
the RRs give the SE law for large particles, with the friction (drag) 
coefficient given by the hydrodynamic solution of the extended Boltzmann 
equation. Since the extended Boltzmann equation gives "4~r," so, too, does 
a correct treatment of the RRs. 

The background just given should help clarify the goals of this paper. 
First, despite its desirable features, the RR equation has never been shown 
to be the true kinetic equation for some limit or other. We will show this 
(subject to some reasonable assumptions) for a massive particle executing 
Brownian motion in a dilute gas. In other words, the Brownian limit, the 
BBGKY hierarchy, our starting point, reduces to a closed kinetic equation, 
and that kinetic equation is identical to the Brownian limit of the repeated 
ring equation. Of course, reduction of the hierarchy to the closed Boltz- 
mann equation at low density has been extensively studied; our main result 
is that the Brownian limit is similarly tractable. 
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Second, we will show that the Brownian limit of the repeated ring 
kinetic equation reduces naturally to the simpler Fokker-Planck equation; 
in fact, the manipulations needed to establish the RRs in the limit and 
those needed to produce the Fokker-Planck equation are the same. Finally, 
we will show that the friction coefficient in the Fokker-Planck equation 
may be calculated from the extended Boltzmann equation, so we may carry 
over all the work of Dorfman (6) et al. This means, among other things, that 
the diffusion coefficient calculated in the Brownian limit is valid for 
arbitrary particle radius. 

Our work is by no means the first study of the high mass limit of 
formally exact equations for tagged particle motion. Earlier authors (8) have 
obtained the Fokker-Planck equation, with some expression, generally an 
integral of a time correlation function, for the friction constant. Our new 
contribution to this line of research is the relation of the high mass limit of 
the hierarchy to the repeated ring and extended Boltzmann equations, as 
well as to the Fokker-Planck equation. 

2. THE RAYLEIGH-BOLTZMANN HIERARCHY 

We consider a system of hard spheres consisting of a single tagged 
particle of mass M and radius R and N bath particles of mass m and radius 
d/2. The distribution function for the tagged particle, Fi, 0 = F, and the 
distribution functions for the tagged particle and s bath-particles, FI., 
(s = 1,2, . . .  ), are coupled in the infinite hierarchy 

0---7- + v. VF1, s + v i .  V r i F l ,  s - T (i)Fl, , 
i = 1  i = 1  

(2.1) 

0-7-+ v i ' V r F , = n  ~ d3r,+ld3v,+iT_(i ,s+l)F,+l 
i = l  i = l  

I r i - r j [>d ,  i ~ j ,  i , j = l , 2  . . . . .  s s = l , 2  . . . .  
(2.2) 

Unsubscripted and subscripted variables refer to the tagged and bath 

I r i - r j ]>d ,  ir i , j = l , 2  . . . . .  s, s = 0 , 1 , 2  . . . .  

and the distribution functions for the s bath-particles, F s (s = 1,2 . . . .  ), are 
coupled in the infinite hierarchy 
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particle, respectively, n is the density, r and v denote position and velocity; 
T_ (i) and T_ (i, j )  are binary collision operators, for the tagged particle 
and the ith bath particle and the j th  bath particle, respectively. The binary 
collision operators (9) are given by the relation 

T ( i , j )  = o 2 s  �9 n[ • [ ~ ( x i , j  - on)b , j  - 8 (x , j  + 

(2.3) 

where d~2 is an element of solid angle, n is a unit vector in the direction of 
the point of impact, O is the Heaviside function, 8 is the Dirac delta 
function, xi, j = r i - r j  and g~j = v i - v j  are the relative position and veloc- 
ity, respectively, and o is the collision diameter of the i,j pair. T (i) is 
obtained by identifying the j th  particle as the tagged particle and dropping 
the j th  subscript from the relative position and velocity. The operator b i 
replaces the precollision (unprimed) velocities with the postcollision 
(primed) velocities 

v, i = v i  2M (g i .n )n  
m + M  

v ' =  v + 2______m__m(gi. n)n 
m + M  

(2.4) 

The particular model we wish to discuss is that of a tagged particle of 
arbitrary size and mass moving in a background gas of point particles 
whose dynamics is described by the Boltzmann equation. Thus excluded 
volume effects and dynamic correlations due to the finite size of bath 
(background) particles must be eliminated. Formally this is achieved by 
taking the low-density or Boltzmann-Grad limit [ d ~ 0 ,  n - + ~ ,  m---)0, 
(nd2)-1 fixed, nm fixed). (1~ By taking this limit, the bath particle hierarchy 
can be replaced by the Boltzmann hierarchy (11) 

< k 0--7- + vi" v ' F s  = n ~ ,  d3V,+l To(i,s + 1)F,+, 
i=1  i=1  

 =1,2 . . . .  (2.5) 

Here, T O is the binary collision operator for point particles. The Boltzmann 
hierarchy describes the decay of arbitrary initial correlations on space and 
time scales on the order of or greater than a mean free path and mean free 
time. For our purposes, we will assume that at some initial time in the past, 
the distribution functions for the bath particles were factored into products 
of one-particle distribution functions (initial molecular chaos). The Boltz- 
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mann hierarchy then reduces to the Boltzmann equation 

OFt f O----t- + t)! " Vr lF 1 = t7 d3t)2 T o ( l , 2 ) F , ( v , ) F , ( v 2 )  (2.6) 

For convenience, the space and time dependence of the distribution func- 
tions have been suppressed. 

The Boltzmann Grad limit applied at fixed R to the bath-particle 
subsystem of the hierarchy for F~,, (s = 0, 1 , 2 . . .  ) yields the Rayleigh- 
Boltzmann h ie ra rchf  

, 0-----~ + v" VF1, s + vi" V r F l  s - ( i )Fl ,s  
i = 1  i = 1  

s 

f T'_ (s + 1)F,,s+ , + n • ( d 3 v , + ,  To( i , s  + 1)FL~+, = n d3rs+ l d3v~+l 
i= 1 ..' 

s = 0, 1,2 . . . .  (2.7) 

The primed binary collision operators indicate the replacement ( R  + d / 2 )  
R consistent with the Boltzmann-Grad limit. Unlike nd 2 for the bath- 

particle hierarchy, nR  2 is not finite in the Boltzmann-Grad limit. However, 
the collision integral is finite through its implicit dependence on the limit 
via the distribution functions FI, ~ (s = 0, 1 , 2 , . . .  ). In the Brownian limit, 
the scaled parameters are again explicit since n R  2 is replaced by n m R  2, 
which is finite. Notice that in the Rayleigh-Boltzmann hierarchy, in con- 
trast to the Boltzmann hierarchy, the finite size of the tagged particle acts 
as a source of correlation and is responsible for our interest in the 
nontrivial nature of this model. 

The tagged-particle-bath-particle hierarchy can be recast as a hierar- 
chy for the irreducible correlation functions G1, i (i = 0, 1 , 2 . . .  ). The 
irreducible correlation functions are defined by the nonequilibrium Ursell 
cluster-expansions(~3) 

F = G  

FI, , = F F  l + G,a(1 ) (2.8) 

F,, 2 = F F ! ( 1 ) F , ( 2 )  + GI,,(1)F,(2 ) + GL,(2)F!(1 ) + G!,2(12 ) 

where the bath-particle labels appear as arguments of the Gl, i function. 
When the cluster expansions are substituted in the Rayleigh-Boltzmann 

2 The expression "Rayleigh-Boltzmann hierarchy" has also been used for systems where the 
tagged particle is a point particle; of Ref. 12. 
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hierarchy, the resulting equations reduce to the hierarchy 

0 Gl.s 
0----~- q- V" V G1, s + ~ gi" V r~Gl,s 

i=1  

T' + 1)G,,,Fl(S + 1) 

- ~ J i , , + , ( G l , s ; F , ) -  ~ T' (i)a,, ,  
i = 1  i=1  

= 2 f ' -  ( i ) G l , s - l F , ( i )  -t- nfd3r,+,a3v,+.P '_ ( i ) a , , , + ,  
p 

s 

+n• fd3rs+,To(i,s+ 1)G] , ,+~ s = 0 , 1 , 2  . . . .  (2.9) 
i=1  

where 

Ji,,+,(G],, ; F ] ) =  nd2fd3v,+ , f 4 J a  O(gi,,+] .n)Igi,s+," n[(1 + ei,s+l) 

• [ G,,,(v~)F,(v;+ ,) - G1.,(vi)F](Vs+ ,)] (2.10) 

Pi.~+I permutes the velocity variables with subscripts i and s + 1, and ~p  
indicates a sum over the s -  1 distinct permutations of the bath-particle 
labels between G~,~_~ and F~. The function GL,_ ~, which occurs when 
s = 0, is defined to be zero. The reduction is accomplished by using the 
Bo!tzmann equation and all the equations for the irreducible correlations 
functions preceding any given level (a level refers to a particle choice of s) 
to eliminate from that level any terms which are satisfied identically by all 
the preceding equations. 

The hierarchy for the irreducible correlation functions has the form 

LiG1, i = S i _  1 '[- S i + ] ,  S 1 ~- 0, i = 0, 1,2 . . . .  (2.11) 

where L i, S i_ l, and Si+ l can be identified from the equations of (2.9). The 
form of (2.11) is intended to suggest an inhomogeneous equation where 
S~_ l and S,.+j act as sources of G~, i. Equation (2.11) is not, however, an 
inhomogeneous equation of the usual type; i.e., the sources, Si_ 1 and S~+ 1 , 
depend on the irreducible correlation functions, G1,~_ ] and Gl,i+l, respec- 
tively. Nonetheless, as we shall see, for space and time scales characteristic 
of Brownian motion, these equations do become inhomogeneous equations 
where the sources act as given fields driving the governing equations. 

So far, nothing has been said about proximity to equilibrium. From 
here on, however, we shall assume that the bath is initially in thermal 
equilibrium and that the complete system is close to equilibrium for all 
times. The initial distribution functions for the bath particles are Max- 
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wellians 

( t i m  ,3/2 [ ~_m 2) i =  1,2, (2.12) F , ( i ; t = O ) = 4 , o ( V i ) = n  ~ )  e x p k -  , . . .  

where (k/~)-I is the temperature and k is the Boltzmann constant. As is 
well known, these functions satisfy the Boltzmann equation (2.6) and, as a 
consequence of the H-theorem, are maintained for all times. When they are 
substituted in the hierarchy for the irreducible correlation functions to- 
gether with the alternative forms for the tagged-particle distribution func- 
tion, 

F = r + h) (2.13) 

and the tagged-particle-bath-particle, irreducible, correlation functions, 
s 

Gt,, = ~0(v) I I  ~0(vi){h~ q + h~,,}, s = 1,2 . . . .  (2.14) 
i=1  

a hierarchy, linearized with respect to the bath-particle distribution func- 
tions, for the deviations from equilibrium, h and hi, ~ (s = 1,2 . . . .  ), results: 
i.e., 

Oh + v .  Vh = I , (h  + hi,,) (2.15) 
~t 

Ot + v �9 Vhl, ~ + gi" Vxihr,~ - I~+~hl,~ 
i=1 

i=1  i=1  

= ~_. r ; ( i ) h l , , _ l +  L+~h~,+~ + L ; , ~ + i h l , , +  , i 
i=1 i=1 

where 

s = 1 , 2  . . . .  

(2.16) 

Is+l{ hl's 
, , h i1 ,+ ,  j 

(2.17) 

L~,,h,,~ = , f d3vs OO(%) f 4 J a  | , �9 n)lgi, , �9 v[ 

X [ h,,~(v; ,v'~) - hl,~(v i ,vs) ] (2.18) 

Li's+ lhl's = Fl f d3Vs+ l ~~ l) f4erd~ O(gi's+ l " n) Jg i ' s+  1" Ill 

• (1 + P~,~+l)[h,,~(v~) -- h,,~(vi) ] (2.19) 
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The bath particle variables, r i and vi, have been replaced by relative 
variables, x i and gs. Equations (2.13) and (2.14) define the quantities h and 
hi, s (s = 1,2 . . . .  ). To ensure that the complete system is close to equilib- 
rium for all times, we also require that h and hi,, (s = 1,2 . . . .  ) be in some 
sense small for all times. Typically, one constructs a norm ]]hl,s] [ (s = 0, 1, 
2 , . . .  ) on a suitable function space and requires Ilh~,~l] << 1 for s - 0, 1, 

, . . . .  

The linearized hierarchy for the irreducible correlation functions de- 
scribes the decay of arbitrary initial correlations between the tagged parti- 
cle and bath particles. If, as we assume, G1, s (r,v, 1 . . . . .  s; t - - 0 )  = 0, 
s = 1,2 . . . .  , then the hierarchy describes the buildup of correlations from 
an uncorrelated initial state. (In this case, ]]h[l<< 1 initially should be 
sufficient for ]]hl,,] ] << 1, s = 0 , 1 , 2  . . . .  for all times.) Moreover, if G1, 2 
(r, v, 12; t > 0) ~ 0 for physically interesting times, then the tagged-particle 
motion is described by the first two equations of the Rayleigh-Boltzmann 
hierarchy. The first two equations are the tagged-particle equivalent of the 
repeated ring kinetic equation in the form introduced by Ernst and Doff- 
man. (2~ We will show that, in the Brownian limit, the rate of change of the 
tagged-particle distribution function is sufficiently slow (in the sense that it 
is higher order in our perturbation expansion) that the condition G1, 2 
(t > 0) = 0 is indeed satisfied. 

3. F O K K E R - P L A N C K  EQUATION 

To derive the Fokker-Planck equation and the Brownian limit of the 
repeated ring kinetic equation, we must work out the magnitude of the 
various terms in the linearized hierarchy for a massive tagged particle in a 
gas of point particle. Since we work with systems nea r  equilibrium, we 
rescale the velocities of the particles to their equilibrium root mean square 
values. Then v is small with respect to v i by a factor of e = ( m / M )  1/2, and 
E is the natural small parameter for the problem. 

An additional dimensionless parameter, the Knudsen number, k n 
= l / R ,  where l = (nd2) -1 is the mean free path of the gas, also appears on 
taking the tagged particle radius R as a characteristic length for significant 
variation of the gas-particle distribution function. The Knudsen number 
enters by estimating the quantities Vxhl, s (s = 1,2 . . . .  ) to be of order 1 / R  
and then by comparing this estimate with the length l which arises from the 
gas-particle collision integrals. Later we shall assume the existence of 
distinct time scales. Since the time scales may depend on both kn and e, it is 
possible, even for small e, that k~ may be chosen so that the separation of 
time scales breaks down. To avoid this difficulty, our approach will be to 
fix k~, and then to order the hierarchy in powers of e; that is, for any k n, we 
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expect that it will be possible to choose e small enough so that the 
conditions for Brownian motion will be satisfied. 

The factors of e enter the hierarchy in five ways: 
(1) Through explicit mass dependences which appear in the equa- 

tions relating the precollision and postcollision velocities [Eq. (2.4)]. This 
mass dependence is a result of applying the energy and momentum 
conservation equations to a binary collision. 

(2) Through implicit mass dependences which arise from choosing 
the thermal velocity as the characteristic scale for the tagged-particle 
velocity and the bath-particle velocities. 

(3) Through implicit mass dependences which arise from assuming 
Taylor series expansions in e for the correlation functions h~, s (s = 1, 
2 . . . .  ) consistent with the Brownian limit. It should be emphasized, 
however, that the choice of a Taylor series expansion for hi, s is suggested by 
the form the hierarchy equations take after making a mass expansion of the 
collision integrals. Therefore, it should not be thought of as being a 
completely separate ad hoc assumption [see the paragraph following Eq. 
(3.23)]. 

(4) Through implicit mass dependences which arise from assuming 
distinct time scales for the Brownian particle processes and the bath 
particle processes. With (3), the right side of the first hierarchy equation 
will be proportional to ~2 [see Eq. (3.25) and the discussion following Eq. 
(3.26)]. The factor E 2 magnifies the time scales and defines the characteristic 
time ~2t for Brownian particle processes as can be seen from 

e 0(er) = e20h 

where 0 is the Fokker-Planck operator. 
(5) And finally through implicit mass dependences which arise from 

taking the length for significant variation of the Brownian particle distribu- 
tion function to be the natural length in the Brownian limit. Here, the 
factor E stretches space and introduces the rescaled position vector er as can 
be seen from the last equation. 

We apply the first two ways to obtain to order ~ the relations between 
the precollision and postcollision velocities, 

where 

= v? + (gi" n)n 

2m v' = v + - ~ -  (g / .  n)n 

(3.1) 

(3.2) 

v* = v -  ( g i . n ) n  (3.3) 



44 Mercer and Keyes 

the Maxwell velocity distribution functions, 

ea0(vi) = O0(gi)(1 - [3mv.gi), i = 1 , 2 , . . .  (3.4) 

and the correlation functions 

hLs(r,v,x ~ + r,g I + v , . . . ,  x s + r,g s + v;t) 

= h l , s ( r , x ] , g ~ , . . . , g s ; t ) +  ~ ( V . T g h l ,  ~ + r . T x h l , ~ )  s = 1 , 2  (3.5) 
i = 1  

The fifth way we apply to estimate the order of magnitude of the terms 

Oh1, ~ [ Ohls ] 
v.  Or = e2 v .  , ~(cr) 

The third and fourth ways we discuss in the remaining portion of Section 3. 
The first equation of the tagged-particle hierarchy has a direct part I~h 

and an indirect part IlhL1. The direct part gives the rate of change of h due 
to uncorrelated binary collisions with the bath particles. For a point-tagged 
particle I~hl, 1 is zero and Ilh is the familiar Lorentz-Boltzmann collision 
integral. By assuming h has a Taylor series expansion. 

h ( v ' ) -  h ( v ) =  - - ~ g ,  . nn .  Vvh + 2 ( M )  2(gl "n)2nn: VvV~h + . . .  (3.6) 

the Lorentz-Boltzmann collision integral can be replaced by a series 
expansion in powers of the gradient of h with respect to the tagged particle 
velocity. The coefficients of this series are integrals which may be evaluated 
analytically. The lowest order term (i.e., order e 2) has the Fokker-Planck 
form (14) 

~ V  v . ( v F +  (f lM)-'V~F) (3.7) 

with a friction coefficient 

2 v/2 m ~ = -~ nR2~rl/2---~ ( flm)-l/2 (3.8) 

where the subscript, ~ ,  indicates that the bath behaves as if it had an 
infinite mean free path. Instead of evaluating the integrals, the coefficients 
in the expansion can be replaced by binary collision operators acting on 
functions of the relative velocity alone. Indeed, if we write 

g'/= gi - 2(g e .n)n (3.9) 

thn it is straightforward to show that the friction coefficient is given by 

flnm 2 f d3x~d3g,,~o(g~)g 1. T (1)g~ (3.10) 
~ = 3 M  

where the prime on the binary collision operator has been dropped to 
indicate that it now acts only on relative velocities. This last approach will 
also be used in the treatment of the full hierarchy, since it will prove to be 
especially useful for interpreting the results of our perturbation expansion. 
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The indirect part gives the rate of change of h due to correlated 
sequences of collisions with the bath particles which are induced by the 
motion of the tagged particle. The c-expansion of this collision integral and 
others like it follow from the expansion of the binary collision operator 
expression T'_ (s)hl, s. We first consider only factors of e which arise from 
our scaling assumptions and from explicit factors of m / M .  The correlation 
functions are again assumed to have Taylor series expansions 

h,,s(v', v;)-  h,,s(v, vs) 
2m = h,,~(v,v's) - h,,s(v,L) + -~-gs  �9 nn �9 Vvh1,~(V, Vs) + . . .  

2m =hl , s (V ,V*)-h l , s (V ,  V s ) + - - ~ - g s . n n .  Vvhl,s(V,V*)+ . . .  (3.]1) 

where the difference between v'~ and v* is higher order in e. By using the 
identity 

2g~ �9 nn �9 Vvhl,~(g;) ~ - [g ; .  Vvhl,s(g;) - gs" V~h,,s(g~)] 

+ g~. [ V,hl,s(g's) - V,hl,s(gs) ] (3.12) 

and the expansion (3.5), the binary collision operator expression T'_ (s)hj,~ 
to O(e) is 

_ m m . T(s)V~hl ~ T '  (s)h,, s = T (s)h,,s -~  T_ (s)gs �9 V,h,,~ + ~ g~ 

s--I 
+ v- T_ (s)V~h,,~ + ~] v- Vg:T (s)hl, ~ (3.13) 

i=1 

where T (s) = T_ (s) - g~. ~fi(x~ - R), :~ = xJ]x~]. When the expansion 
of T '  (s)hl, ~ is substituted in the collision integral I~h~,~, the integral is 
given to lowest relevant order in e by 

( I s h , , ~ ) , = - f l n m f d 3 x ,  d3g, e~o(g~O . :T_ (s)[vh~,, - ( f i M ) - ' V , h L ,  ] (3.14) 

where the subscript outside the parenthesis indicates the order in E without 
any additional assumptions about the order of hi, s. The indirect part is a 
special case of (Ifll,s), with s = 1. 

Under certain circumstances [e.g., the Brownian limit to be discussed 
following (3.26)], hi, 1 assumes the simpler form h~, 1 = a .  b, where a is a 
function of the bath-particle independent variables only and b is a function 
of the tagged-particle independent variables only. Then the indirect part 
becomes 

(ilhl,~) l= _ fln___mm3 f d3x~ d3gl~~ i f -  ( l)a 

• [ ( f l M ) - l v ,  �9 b -  v" b] (3.15) 
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The collision integral Is+ lhl,, 
part to obtain 

(Is+lh"s)2= flnm23 f d3x'+'d3gs+'e~ 
•  Vvh,.s + 

The remaining collision operator expressions we need are 

(T'_ (s)ht ,s_l) ,= m M T_ (s)g, "Vvhl,s_ t 

and 

is analyzed in the same way as the direct 

1" T -  (s + 1)gs+ 1 

(3.16) 

(3.17) 

( T '  (s)h],s)o= T (s)h~. s (3.18) 

The bath-particle collision integrals 

(L~,,hl,,) o = L~,,hl, s (3.19) 

(Li,s+~hl,Oo = Li,,+~h~,s (3.20) 

depend parametrically on the tagged-particle variables and are obtained 
directly from the expansion of the correlation function, (3.5), 

The remaining terms of the hierarchy are, in order of magnitude 
estimated as V i .Vrfll,s,-,.~(vi/R)hl,s, L[,lhl ,s~(vi/ l)hl ,s ,  L i , ,+Lh] ,~(v i / l  ) 
hi, ~, T ( i )h l , ,~ (v i /R )h l ,  ~, and T_ ( i )h l ,~_l~(cvi /R)ht ,s_  1. In general, the 
friction coefficient which emerges from this treatment will depend on K n 
and ~. 

As remarked earlier, we will regard Kn fixed and independent of c and 
continue to assume, for c small enough, that the ~ expansion remains valid. 
With K, fixed, the last set of quantities except for T_ (i)h], ~_ 1 are O(1) in e. 

We now must find the order of hi, ~ and its time derivatives. Actually, 
the order of the time derivatives are a priori unknown. Nevertheless, for a 
sufficiently heavy particle, we expect to find the distinct times 1 and e -2 for 
the bath processes and for the tagged-particle processes, respectively. The 
separation into two time scales is only approximate for tagged particles of 
finite mass. Therefore, we adopt the more general multiple time scale 
expansion 

( 3hl~ Ohl~ 3ht 

where the subscript 0, 1,2 . . . .  indicate the times 1 , e - l , e - 2 , . . . ,  respec- 
tively. Equation (3.21) is the most fundamental assumption of the theory. 
To obtain the Brownian limit, however, we only require that the lead term 
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in Ohl , , /~ t  is O(E~ the remainder of Eq. (3.21) is not needed unless we 
desire the first corrections to the limit. 

However, we wish to point out that if only the time-independent 
friction coefficient is desired, we could just as well assume the higher-order 
distribution functions are functionals of tagged-particle distribution func- 
tion as far as their phase space coordinates and time are concerned. Then 
Bogoliubov's method (15~ (with the Brownian particle relaxation time replac- 
ing the mean free time) could be applied directly to compute the time 
derivatives of the correlation functions. However, Bogoliubov's procedure 
yields, to lowest order, a steady-state Boltzmann-like equation for the 
tagged-particle-bath-particle correlation function. Since the lowest-order 
equation is time independent, the functional assumption is awkward to 
apply if one wants to take into account low-frequency motions of the bath 
such as one might via the Stokes-Boussinesq drag law. The foregoing 
difficulty is avoided if we directly assume distinct time scales. 

Among the terms of the hierarchy, the expression T ;  (i)hl,  s_ l plays a 
special role. It acts to generate higher-order correlations out of lower-order 
correlations and, for an uncorrelated initial ensemble, it is the sole source of 
higher-order correlations. The correlations which do appear in time must be 
developed through this type of term, and it can therefore be used to 
estimate the asymptotic relation between the various correlation functions. 
To do this, we need to know the order of magnitude of the action of the 
collision operator on hl,~_ 1. In fact, we have already shown that T 2 ( i )  
hi,s_ 1 is ~ ( e v i / R ) h j , , _  1. However, T2( i )h l ,~_ l  is ~ ( v i / R ) h l , , _  l because 
of the term gi" x i 6 ( x i -  R ) h l , , - 1 .  This last term and others like it are a 
necessary part of the definition of the binary collision operator which 
ensures that the correlation functions hi, s (s -- 1,2 . . . .  ) are zero inside the 
tagged particle. They do not affect the value of the correlation functions 
outside the tagged particle; in the latter region, the correlation functions are 
determined by collisions. Therefore, insofar as we are interested in the 
relative order of the various correlation functions with respect to each 
other, we need only consider the order in e of the action of T'_. Neverthe- 
less, the hi, , (s = 1,2 . . . .  ) are zero inside the tagged particle and we would 
like the perturbation expansion to preserve this feature order by order. We 
are mainly interested in the lower orders of the perturbation expansion, 
indeed, in the leading order; we transform the first few equations of the 
hierarchy to illustrate a procedure where this property is maintained. To do 
this, we define ffl,1 by the r e l a t ion  hl,l = hi,1 +fl(xl) h, where f l (Xl)= 
--1 + O(Xl) is the hard sphere Mayer f-function. The first and second 
hierarchy equations become 

0hi. I ~ 
0---7- + v .  V h = I lh  + Ijhl ,  1 (3.22) 
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and 

OfflA ~ 
~t + V" Vs + gl" Vx,s 12s L12s ~1_ (1)ffl, 1 + f l l 2 h l ,  1 

= T'_ (1)h + 12hL2 + L,2h, ,  2 (3.23) 

Now, on the right side of (3.23), the action of T' is of order ~. On the left 
side a new term, f l I 2h l , l ,  appears which is ~2fl/~1,1. 

To complete our perturbation expansion, we now consider the implicit 
dependence of hi, s. Recall that hl ,s( t  = 0 ) =  0; as time increases these 

correlation functions become nonzero through the action of terms like 
T ' ( i ) h l , ~ _  1 [Eq. (2.16)]. The growth of these correlations, and, thus, the 
order of the hi, s, is determined by our time scale assumptions. Since the 
characteristic time for the hi, s is O(1), these functions will reach a steady 
state if driven by a source which varies on the Brownian time scale; the 
strength of the correlations is just the strength of the source. Now, h~,~ is 
driven by h and h 1,~. Only the magnitude of the h 1,~ relative to h is relevant, 
so we let h be O(1). The h-source has an explicit factor of e and the 
hl,2-source has no explicit e's. Two possibilities then exist. If h~, 2 is negligi- 
ble with respect to oh, then hi, 1 is O(e). The same argument applied to the 
equation for hi, 2 gives hl,2~0(r and, in general, 

hi, ~ = (h l , , ) s+  (hl,s)s+ 1 + . . .  (3.24) 

Eq. (3.24) is self-consistent, that is, it is derived from the assumption, 
chLs_ ~ >> hLs + 1, and it is consistent with that assumption. 

The second possibility is hi, 2 > Eh, or, h l ,2~O(E '~) ,  c~ < 1; then, we 
have h1,1~O(r This scenario is inconsistent with Brownian motion, 
however, as the hi, ~ term in the equation for h then dominates all the other 
terms, while the entire equation is of the same order if Eq. (3.24) holds. 
Thus, our imposition of the Brownian limit and our time scale assumptions 
yield Eq. (3.24) without extra assumptions. This result makes excellent 
sense. The higher correlations are driven by the lower, so correlation 
"cascades" up the hierarchy, with h|,s+ 1 less developed than hi, s, by a 
factor of e. 

With the expansion (3.23) and the earlier expansions of the term, of 
the linearized hierarchy equation, we get, to lowest order, 

0/7 + v.  ~Th = (Ilh)2 + (/l(hl,1)l)l (3.25) 
Ot 

and 

O(hl,i)l (Ot)0 + gl " vxl(J~l'l)l - L12(]~I'l) 1 - 

_ m T'_ (1)g 1 �9 Vvh  
M 

T (1)(/~,.,), 

(3.26) 
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There are two features worth noting about these equations. Firstl both of 
the collision terms on the left side of (3.25) are of order e2--consistent not 
only with the picture of two time scales but also with a Brownian time scale 
(i.e., times like c2t). Secondly, equation (3.26) is an integrodifferential 
equation for the bath particle quantities alone. The expression V~h, which 
is the only quantity on the right side of Eq. (3.26) that depends on the 
tagged-particle independent variables is a constant vector as far as this 
equation is concerned since it varies on the Brownian particle's time and 
space scales, and what remains of the expression on the right side has a 
given functional dependence on x 1 and gl. The equation is, therefore, an 
inhomogeneous equation of the usual type (where the inhomogeneous term 
does not depend on any unknown functions of x 1 and gl) and the right side 
may be regarded as an external forcing function. Indeed, one might say 
that the gradient in the tagged particle velocity is driving a flow in the gas. 

Equation (3.26) is generally difficult to solve for arbitrary values of K n . 
However, it can be put in a more familiar form. Since (3.26) is linear, then 
the part of (hi,l) ~, which arises from the inhomogeneous term, must have 
the form ( h i , l )  1 = a- b. The function a is determined by solving Eq. (3.26) 
and the function b is equal to (m/M)V~h. The expression b can be 
substituted in (I1(h1,1)1)1 to yield 

B'm2 f d3x,d3g, eoo(g,)g . T (1)a[(/?M)-'V2~h - v" V~h] ( I I (h  1'1)1)1 = 3 M  

(3.27) 

Equation (3.26), (11h)2 [(3.16), s = 0], and the definition of h (3.13) can be 
used to write (3.25) as 

O--ff-F +v'VF=~V~'[vF+(flM)-IV~F] (3.28) 
Ot 

with 

l?n. ,  ~ 
fa3x, a3g, ~o(gl)g," • (1)(gl + a) (3.29) ~=  3M 

Except for the factor M-~,  these equations for the calculation of the 
friction coefficient in the Brownian motion Fokker-Planck equation are 
identical to (6) Dorfman, van Beijeren, and McClure's extended Boltzmann 
equation for the drag on a stationary sphere in a gas flow which is uniform 
far from the sphere. Now, however, V~h plays the role of the uniform flow 
velocity. The extended Boltzmann equation does not make any assump- 
tions about the degree of rarefaction of the gas; therefore, the friction 
coefficient is generally a function of K n. The ease with which Eqs. (3.24) 
and (3.25) were identified with existing work on the extended Boltzmann 
equation justifies the recasting of the coefficients in the various series 
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expansions in terms of binary collision operators acting on functions of the 
relative velocity alone. 

Finally we wish to point out that our expansions are systematic in e. 
They can be used to calculate correlations to the Fokker-Planck equation 
for a tagged particle of finite mass. They are, of course, subject to the 
restrictions imposed by assuming that the correlation functions have Taylor 
series expansions. In general, nonanalytic terms in { must be expected to 
occur and then the expansion may, at best, be asymptotic to actual 
solutions of the hierarchy equations. Still, the higher-order corrections to 
the Fokker-Planck equation may be useful for estimating finite mass 
corrections to the Stokes-Einstein diffusion coefficient. 

4. S U M M A R Y  

We have presented a strictly kinetic theory of Brownian motion for a 
hard sphere Brownian particle of arbitrary size moving in a gas whose 
dynamics is described by the Boltzmann equation. The theory has a 
number of important consequences. First, it demonstrates that the repeated 
ring kinetic equation has, as a natural limit, the Brownian motion Fokker- 
Planck equation. Second, it shows that under certain circumstances the 
repeated ring kinetic equation can be derived from the BBGKY (Bogolu- 
bov, Born, Green, Kirkwood, Yvon) hierarchy on the basis of a perturba- 
tion expansion, rather than on an ad-hoc neglect of the three body 
irreducible correlation functions. Third, it is a systematic perturbation 
expansion and may therefore be used to calculate corrections to the 
Fokker-Planck equation for tagged particles of finite mass. 

To carry out the theory, we considered an isothermal system which is 
near equilibrium at all times. While the theory could be carried out for 
arbitrary initial correlations, we restricted ourselved to uncorrelated initial 
ensembles. As such, the theory describes the origin of correlations as an 
initial value problem, and, in this form, makes the most natural contact 
with existing work on the repeated ring equation. 

The most fundamental assumption made is that there exist distinct 
time scales for the tagged particle/bath particle system, when the tagged 
particle is heavy with respect to the bath particles. The existence of distinct 
time scales does not guarantee a Brownian motion limit. However, if the 
true motion of the tagged particle is to be preserved on the time scale {2t, 
then, to lowest order, the kinetic operator for the distribution function F is 
described by the first two equations of the linearized Rayleigh-Boltzmann 
hierarchy and is of order r consistent with the Brownian limit. The first 
two equations are the e = (m/M)l/2--~O limit of the repeated ring kinetic 
equation. Further, it can be seen that the three-body correlation function 
contributes in order e 3 and is thus justifiably neglected in the limit {--~ 0. 
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Finally, we have shown that the friction coefficient appearing in the 
Fokker-Planck equation may be found by a solution of the extended 
Boltzmann equation. This reduces calculation of the friction constant to a 
problem which has already been (4-6) studied, and constitutes a derivation, 
from kinetic theory, of Einstein's relation between the friction on a Brown- 
Jan particle and the force on a fixed object in a flowing gas. 
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